Servers & Developers

Julian Nadeau
Production Engineer

s shopify

Provisioning & Orchestration of Servers

Setting a server up
Packer - one server at a time
Chef - all servers at once

Containerization

What are Containers?
A look at Kubernetes

Developer Environments
Similar to production?
Local vs Remote
Can containers be used?

Servers & Stuff

s shopify

Imagine your job is to setup servers. You want a
web-app to run.

e Install a few dependencies, maybe Ruby, PHP,
Node.

e Get aweb server up and running (maybe Nginx or
Apache?).

e Open up a few firewall ports.... and Done!

This is called an artisanally set up server. In server-land,
artisanal is generally not a good idea.

Setting a server up (cont)

Imagine you need to set that server up again, will you
remember how to? Maybe you’ll script it (more on this in
a moment).

Now, imagine that you have 10 servers and for some
reason you need to update Ruby on all everything, but
this causes some issues with another dependency.

Now imagine that with 50 servers, 100 servers, 1000
servers.

Server Stats for Shopify

2 00*

SSSSSSSSSSS
AAAAAAAAAAAAA

Cool, so now that we’ve established that artisanally
crafted servers aren’t the best idea, what can we do?

Let’s script it.

e —— — il - £
T LIEE

Lo L

Choosing a set of scripts and settings for a server is s e .
called a “configuration”. Applying that configuration is R
called “provisioning”.

We’ll talk about both in the next few slides.

vmware-vmx: Cloning source VM...

vmware-vmx: Starting virtual machine...
vmware-vmx: The VM will be run headless, without a GUI. If you want to
|3 ~ vmware-vmx: view the screen of the WM, connect via VNC with the password "+unO<;Bd" to
A P vmware-vmx: 127.0.0.1:5956

vmware-vmx: Waiting 2s for boot...
vmware-vmx: Connecting to VM via VNC
vmware-vmx: Typing the boot command over VNC...
vmware-vmx: Waiting for SSH to become available...
vmware-vmx: Connected to SSH!
vmware-vmx: Uploading the 'darwin' VMware Tools
vmware-vmx: Uploading packer_cache/macstadium_shopify_dep => /private/tmp/id_rsa
loca[vmware-vmx: Uploading packer_cache/macstadium_shopify_dep.pub => /private/tmp/id_rsa.pub
vmware-vmx: Uploading packer_cache/admin_rsa => /private/tmp/admin_rsa
vmware-vmx: Uploading packer_cache/admin_rsa.pub => /private/tmp/admin_rsa.pub
vmware-vmx: Uploading provision/support/ => /private/tmp
DeVeIOper vmware-vmx: Provisioning with shell script: provision/strapped/ssh.sh
vmware-vmx: + mkdir -p /Users/shopify/.ssh
vmware-vmx: + chmod 700 /Users/shopify/.ssh
vmware-vmx: + mv /private/tmp/id_rsa /Users/shopify/.ssh/id_rsa
vmware-vmx: + mv /private/tmp/id_rsa.pub /Users/shopify/.ssh/id_rsa.pub
bulld vmware-vmx: + mv /private/tmp/admin_rsa /Users/shopify/.ssh/admin_rsa
vmware-vmx: + mv /private/tmp/admin_rsa.pub /Users/shopify/.ssh/admin_rsa.pub
vmware-vmx: + echo 'Adding admin_rsa as authorized SSH key'
vmware-vmx: + cat /Users/shopify/.ssh/admin_rsa.pub
vmware-vmx: Adding admin_rsa as authorized SSH key
vmware-vmx: + echo 'AuthorizedKeysFile /Users/shopify/.ssh/authorized_keys"
vmware-vmx: + echo StrictHostKeyChecking=no
vmware-vmx: + echo UserKnownHostsFile=/dev/null
vmware-vmx: ++ ssh-agent -s
vmware-vmx: Agent pid 349
vmware-vmx: + eval 'SSH_AUTH_SOCK=/tmp/ssh-Oy4CbbklEU8n/agent.347;"' export 'SSH_AUTH_SOCK;' 'SSH_AGENT_PID=349;' export 'SSH_AGENT_PID;'
echo Agent pid '349;'
vmware-vmx: ++ SSH_AUTH_SOCK=/tmp/ssh-0y4CbbklEU8n/agent.347
vmware-vmx: ++ export SSH_AUTH_SOCK
£ vmware-vmx: ++ SSH_AGENT_PID=349
exec"‘Ite c nﬁguratlon vmware-vmx: ++ export SSH_AGENT_PID
vmware-vmx: ++ echo Agent pid 349
vmware-vmx: + chmod 600 /Users/shopify/.ssh/id_rsa
vmware-vmx: + chmod 644 /Users/shopify/.ssh/id_rsa.pub
vmware-vmx: + chmod 600 /Users/shopify/.ssh/admin_rsa
vmware-vmx: + chmod 644 /Users/shopify/.ssh/admin_rsa.pub
vmware-vmx: + ssh-keyscan github.com
vmware-vmx: # github.com:22 SSH-2.0-1ibssh-0.7.0
#
#
+
+

packe

anothey scri pt? vmware-vmx: # github.com:22 SSH-2.0-1ibssh-0.7.0
vmware-vmx: # github.com:22 SSH-2.0-1ibssh-0.7.0
vmware-vimx : chmod 644 /Users/shopify/.ssh/known_hosts
vmware-vmx: + chown -R 501:501 /Users/shopify/.ssh
vmware-vinx:
i 1 i vmware-vmx: real 0m@.441s
Finalized pll script N M et
vmware-vmx: Sys 0m0d.096s
vmware-vmx: Provisioning with shell script: provision/strapped/hooks.sh
Vvmware-vimnx :
5 = vmware-vmx: real 0m@.056s
CommitEnvironment vmware-vmx: user @md.012s
vmware-vimx: sys 0m@.019s
vmware-vmx: Gracefully halting virtual machine...
vmware-vmx: Waiting for VMware to clean up after itself...
vmware-vmx: Deleting unnecessary VMware files...
vmware-vmx: Deleting: output-vmware-vmx/564db789-387c-b8da-051d-5c253elddle2.vmem

Server1

CHEF

Server2

- Packer is a great tool for managing the initial provisioning of a
server, but what if you have a fleet of many servers?
Server3 ——— Chef
- Chef allows you to manage many servers through a centralized
“Chef Server”. The master server tells the provisioning node what
scripts and programs it should run, and allows for iteration to
happen

- The provisioning node checks in on a schedule to see if anything
new is needed

ServerN

\

(e
Z
CHEF

L

|

m -
| .
7] v v
> c C
(7] L [«}]
b1 v w
[
[m
© €
i «© 0 k=
¢ I ¥ 0%
P © b= [(B]
)] @ 2l @
G £ w £
' W rmu W
© -
b ©
(b}
| -
[4}]
5
(B
w Q
. i s
.m o
(%]
1]
2 /
o
[
18]
b
w
=
P
()]
GE
i
(0]
4]
o 5
-
5 3

10

Containerization

s shopify

What are containers?

Containers are a method of operating system virtualization
that allow you to run an application and its dependencies in
separate “groups”.

This means that we can basically group off a system into
“containers” and have many things running at the same
time.

Without containers, processes can fight for resources
(memory, CPU, etc) or run one service per computer.

With containers, processes can be pre-allocated a set
amount of resources so we can run many per host without
the worry of them competing. This is not enabled by default
however.

Database

System

WebServer

Cache

—

App

System

Database

Database

WebServer

WebServer

Cache

Cache

App

App

12

What are they good for?

As mentioned, we can restrict resource usage so we don’t have one
thing taking everything up

Since the containers are pre-built images, we get consistency despite
just running the image

We have different versions of container images, so if something breaks
we can revert to using an older image

Since things are grouped, we don’t have to worry about dependencies

conflicting (perhaps your database requires one version of C, while your
cache requires a different version).

13

kubernetes

Kubernetes

Cluster

— T

Nodel Node2 Node3

Internet

Node

App MySQL Redis

Nginx

Kubernetes is a tool from Google that allows us to manage
containers without caring too much about the servers.

We have a “cluster” (collection) of “nodes” (servers) where we run
our application.

“Pods” (a set of containers) run selected list of “services”
(database, cache, webserver etc).

For example, we may see a simple app run a database container
and webserver in the same pod.

For those that want a deeper look on their own, this is an

abstraction of Borg and Omega in Google’s internal container
orchestration.

14

kubernetes

« Kubernetes is told to run a system as you define it. This means
that if a container dies, it will be brought back up somewhere else.
It also means that it will kill something that is no longer in your

Kubernetes system definition.
Cluster
/ [\\ - This means that you no longer need to worry and freak out if a
Mool Noie? Nodes S specific server dies as Kubernetes will just give the workload to
another server instead.
Node - This allows us to “treat servers like cattle” (aka they’re all
App MySQL Redis Nginx replaceable and are a means to an end)

15

Developer
Environments

s shopify

Similar to Production

Developer environments are similar to production server provisioning
as they have to install and maintain dependencies as well

The main difference is that we may need multiple versions of the same
dependency depending on the project (i.e. Ruby 2.3.3 vs Ruby 2.4.0,
iOS 9 vsiOS 10, etc).

For many cases, a system can only have one version that is active at a
time.

We also don’t know the state of the system as people may have
installed custom environment-impacting programs, scripts, profiles, etc

This is an example for 2 projects, 3 dependencies, 2 versions per
dependency. In reality, there will be many more projects, many more
dependencies, and many more versions.

Project1

Project2

Ruby

— 24.0

libgraphqlparser

— 0.5

System

Ruby

Node

libgraphglparser

17

* Pinned by Richard Monette

Fix for Graphicsmagick/gm issues

Richard Monette 226 v
m To fix the yarn issue, run nvm list, you likely will see io-js, version 2.50. This needs to be removed, as it has an Plain Text
old node version. | completely removed the .nvm folder by rm -rfvingit. Then brew uninstall yarn and
brew uninstall node . With everything removed, you should have no returned values when running which
node and which yarn . Once these are clear, then run dev up and everything will be reinstalled. Fix for GraphQL issues

1 Burke Libbey &% 2
* & Shared post

Fix for GraphQL issues

Last edited 4 months ago

Symptoms:

1. dev up fails with any error related to
libgraphglparser

This is happening because we switched what version we
need by changing which ruby gem we use. To get the
right version, you have to get homebrew to use the core
recipe for libgraphqglparser at version > 0.5.0.

Fix:
1. brew update

2. brew upgrade libgraphglparser

000

Post

Fix for Imagemagick/Rmagick Issues
Post

Fix for v8/libv8 Issues

Post

Fix for Readline Issues
Post

Pinned by Vlad Gorodetsky “®
RMagick MagicWand.h error fix

The fix is: brew uninstall imagemagick && brew install

https://raw.githubusercontent.com/Homebrew/homebrew-

core/6f01412b7f119e618fd5c@ae9c93befeat71f8be/Formula/imagemagick.

rb

Local vs Remote

Can work offline, therefore can code anywhere (like
an airplane)

Dependencies can clash between projects.
Low barrier of entry for text editors and IDEs.

Low latency, the file system is local to it is quick to
update.

Separate environments are possible (one server per
project).

Mitigates the dependency hell.
You have to have a remote-compatible IDE/text
editor and always be online, or be SSHed into a

server at all times.

File system is not local, so syncing errors can occur

19

Containerizing Dev
Environments?

We’ve been talking a lot about environments conflicting with each
other, whether by dependency or resource (cpu, ram, etc)

If we could containerize applications and their dependencies, we would
be able to solve a lot of these problems.

Currently, containerizing makes the code also be separated to a
different system (in the container), which means we have to SSH in
(giving us the problems of remote developer environments)

This is a problem we’re currently thinking about, we have not solved it.
MiniKube is a potential candidate (let’s you run Kubernetes locally) that
is showing promise.

20

Thanks!

W @jules2689
julian@shopify.com

s shopify

